direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C22.49C24, C10.1662+ 1+4, C4⋊Q8⋊16C10, (D4×C20)⋊50C2, (C4×D4)⋊21C10, C4⋊D4⋊16C10, C4.4D4⋊13C10, C42.49(C2×C10), C42⋊C2⋊17C10, C20.326(C4○D4), (C2×C20).964C23, (C4×C20).290C22, (C2×C10).375C24, (D4×C10).222C22, C22.49(C23×C10), C23.20(C22×C10), (Q8×C10).185C22, C2.18(C5×2+ 1+4), (C22×C20).460C22, (C22×C10).103C23, (C5×C4⋊Q8)⋊37C2, C4.38(C5×C4○D4), (C5×C4⋊D4)⋊43C2, C4⋊C4.75(C2×C10), C2.28(C10×C4○D4), (C2×D4).35(C2×C10), C10.247(C2×C4○D4), (C5×C4.4D4)⋊33C2, (C2×Q8).28(C2×C10), (C5×C42⋊C2)⋊38C2, C22⋊C4.25(C2×C10), (C5×C4⋊C4).409C22, (C2×C4).37(C22×C10), (C22×C4).71(C2×C10), (C5×C22⋊C4).157C22, SmallGroup(320,1557)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C22.49C24
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=1, e2=c, f2=g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=bd=db, geg-1=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
Subgroups: 362 in 236 conjugacy classes, 150 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C20, C20, C2×C10, C2×C10, C42⋊C2, C4×D4, C4⋊D4, C4.4D4, C4⋊Q8, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C22.49C24, C4×C20, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, C5×C42⋊C2, D4×C20, C5×C4⋊D4, C5×C4.4D4, C5×C4⋊Q8, C5×C22.49C24
Quotients: C1, C2, C22, C5, C23, C10, C4○D4, C24, C2×C10, C2×C4○D4, 2+ 1+4, C22×C10, C22.49C24, C5×C4○D4, C23×C10, C10×C4○D4, C5×2+ 1+4, C5×C22.49C24
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)(76 86)(77 87)(78 88)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(96 106)(97 107)(98 108)(99 109)(100 110)(101 111)(102 112)(103 113)(104 114)(105 115)(116 126)(117 127)(118 128)(119 129)(120 130)(121 131)(122 132)(123 133)(124 134)(125 135)(136 146)(137 147)(138 148)(139 149)(140 150)(141 151)(142 152)(143 153)(144 154)(145 155)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)(76 81)(77 82)(78 83)(79 84)(80 85)(86 91)(87 92)(88 93)(89 94)(90 95)(96 101)(97 102)(98 103)(99 104)(100 105)(106 111)(107 112)(108 113)(109 114)(110 115)(116 121)(117 122)(118 123)(119 124)(120 125)(126 131)(127 132)(128 133)(129 134)(130 135)(136 141)(137 142)(138 143)(139 144)(140 145)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 156)(2 157)(3 158)(4 159)(5 160)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(36 136)(37 137)(38 138)(39 139)(40 140)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 131)(57 132)(58 133)(59 134)(60 135)(61 126)(62 127)(63 128)(64 129)(65 130)(66 121)(67 122)(68 123)(69 124)(70 125)(71 116)(72 117)(73 118)(74 119)(75 120)(76 111)(77 112)(78 113)(79 114)(80 115)(81 106)(82 107)(83 108)(84 109)(85 110)(86 101)(87 102)(88 103)(89 104)(90 105)(91 96)(92 97)(93 98)(94 99)(95 100)
(1 101 21 96)(2 102 22 97)(3 103 23 98)(4 104 24 99)(5 105 25 100)(6 81 156 76)(7 82 157 77)(8 83 158 78)(9 84 159 79)(10 85 160 80)(11 86 16 91)(12 87 17 92)(13 88 18 93)(14 89 19 94)(15 90 20 95)(26 111 31 106)(27 112 32 107)(28 113 33 108)(29 114 34 109)(30 115 35 110)(36 121 41 116)(37 122 42 117)(38 123 43 118)(39 124 44 119)(40 125 45 120)(46 131 51 126)(47 132 52 127)(48 133 53 128)(49 134 54 129)(50 135 55 130)(56 141 61 136)(57 142 62 137)(58 143 63 138)(59 144 64 139)(60 145 65 140)(66 151 71 146)(67 152 72 147)(68 153 73 148)(69 154 74 149)(70 155 75 150)
(1 66 26 56)(2 67 27 57)(3 68 28 58)(4 69 29 59)(5 70 30 60)(6 121 16 131)(7 122 17 132)(8 123 18 133)(9 124 19 134)(10 125 20 135)(11 126 156 116)(12 127 157 117)(13 128 158 118)(14 129 159 119)(15 130 160 120)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(36 86 46 76)(37 87 47 77)(38 88 48 78)(39 89 49 79)(40 90 50 80)(41 91 51 81)(42 92 52 82)(43 93 53 83)(44 94 54 84)(45 95 55 85)(96 146 106 136)(97 147 107 137)(98 148 108 138)(99 149 109 139)(100 150 110 140)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 151 16 141)(7 152 17 142)(8 153 18 143)(9 154 19 144)(10 155 20 145)(11 136 156 146)(12 137 157 147)(13 138 158 148)(14 139 159 149)(15 140 160 150)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)(56 86 66 76)(57 87 67 77)(58 88 68 78)(59 89 69 79)(60 90 70 80)(61 91 71 81)(62 92 72 82)(63 93 73 83)(64 94 74 84)(65 95 75 85)(96 116 106 126)(97 117 107 127)(98 118 108 128)(99 119 109 129)(100 120 110 130)(101 121 111 131)(102 122 112 132)(103 123 113 133)(104 124 114 134)(105 125 115 135)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,156)(2,157)(3,158)(4,159)(5,160)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,131)(57,132)(58,133)(59,134)(60,135)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,116)(72,117)(73,118)(74,119)(75,120)(76,111)(77,112)(78,113)(79,114)(80,115)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,96)(92,97)(93,98)(94,99)(95,100), (1,101,21,96)(2,102,22,97)(3,103,23,98)(4,104,24,99)(5,105,25,100)(6,81,156,76)(7,82,157,77)(8,83,158,78)(9,84,159,79)(10,85,160,80)(11,86,16,91)(12,87,17,92)(13,88,18,93)(14,89,19,94)(15,90,20,95)(26,111,31,106)(27,112,32,107)(28,113,33,108)(29,114,34,109)(30,115,35,110)(36,121,41,116)(37,122,42,117)(38,123,43,118)(39,124,44,119)(40,125,45,120)(46,131,51,126)(47,132,52,127)(48,133,53,128)(49,134,54,129)(50,135,55,130)(56,141,61,136)(57,142,62,137)(58,143,63,138)(59,144,64,139)(60,145,65,140)(66,151,71,146)(67,152,72,147)(68,153,73,148)(69,154,74,149)(70,155,75,150), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,121,16,131)(7,122,17,132)(8,123,18,133)(9,124,19,134)(10,125,20,135)(11,126,156,116)(12,127,157,117)(13,128,158,118)(14,129,159,119)(15,130,160,120)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,86,66,76)(57,87,67,77)(58,88,68,78)(59,89,69,79)(60,90,70,80)(61,91,71,81)(62,92,72,82)(63,93,73,83)(64,94,74,84)(65,95,75,85)(96,116,106,126)(97,117,107,127)(98,118,108,128)(99,119,109,129)(100,120,110,130)(101,121,111,131)(102,122,112,132)(103,123,113,133)(104,124,114,134)(105,125,115,135)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,156)(2,157)(3,158)(4,159)(5,160)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(36,136)(37,137)(38,138)(39,139)(40,140)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,131)(57,132)(58,133)(59,134)(60,135)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,116)(72,117)(73,118)(74,119)(75,120)(76,111)(77,112)(78,113)(79,114)(80,115)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,96)(92,97)(93,98)(94,99)(95,100), (1,101,21,96)(2,102,22,97)(3,103,23,98)(4,104,24,99)(5,105,25,100)(6,81,156,76)(7,82,157,77)(8,83,158,78)(9,84,159,79)(10,85,160,80)(11,86,16,91)(12,87,17,92)(13,88,18,93)(14,89,19,94)(15,90,20,95)(26,111,31,106)(27,112,32,107)(28,113,33,108)(29,114,34,109)(30,115,35,110)(36,121,41,116)(37,122,42,117)(38,123,43,118)(39,124,44,119)(40,125,45,120)(46,131,51,126)(47,132,52,127)(48,133,53,128)(49,134,54,129)(50,135,55,130)(56,141,61,136)(57,142,62,137)(58,143,63,138)(59,144,64,139)(60,145,65,140)(66,151,71,146)(67,152,72,147)(68,153,73,148)(69,154,74,149)(70,155,75,150), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,121,16,131)(7,122,17,132)(8,123,18,133)(9,124,19,134)(10,125,20,135)(11,126,156,116)(12,127,157,117)(13,128,158,118)(14,129,159,119)(15,130,160,120)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,86,66,76)(57,87,67,77)(58,88,68,78)(59,89,69,79)(60,90,70,80)(61,91,71,81)(62,92,72,82)(63,93,73,83)(64,94,74,84)(65,95,75,85)(96,116,106,126)(97,117,107,127)(98,118,108,128)(99,119,109,129)(100,120,110,130)(101,121,111,131)(102,122,112,132)(103,123,113,133)(104,124,114,134)(105,125,115,135) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75),(76,86),(77,87),(78,88),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(96,106),(97,107),(98,108),(99,109),(100,110),(101,111),(102,112),(103,113),(104,114),(105,115),(116,126),(117,127),(118,128),(119,129),(120,130),(121,131),(122,132),(123,133),(124,134),(125,135),(136,146),(137,147),(138,148),(139,149),(140,150),(141,151),(142,152),(143,153),(144,154),(145,155)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75),(76,81),(77,82),(78,83),(79,84),(80,85),(86,91),(87,92),(88,93),(89,94),(90,95),(96,101),(97,102),(98,103),(99,104),(100,105),(106,111),(107,112),(108,113),(109,114),(110,115),(116,121),(117,122),(118,123),(119,124),(120,125),(126,131),(127,132),(128,133),(129,134),(130,135),(136,141),(137,142),(138,143),(139,144),(140,145),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,156),(2,157),(3,158),(4,159),(5,160),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(36,136),(37,137),(38,138),(39,139),(40,140),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,131),(57,132),(58,133),(59,134),(60,135),(61,126),(62,127),(63,128),(64,129),(65,130),(66,121),(67,122),(68,123),(69,124),(70,125),(71,116),(72,117),(73,118),(74,119),(75,120),(76,111),(77,112),(78,113),(79,114),(80,115),(81,106),(82,107),(83,108),(84,109),(85,110),(86,101),(87,102),(88,103),(89,104),(90,105),(91,96),(92,97),(93,98),(94,99),(95,100)], [(1,101,21,96),(2,102,22,97),(3,103,23,98),(4,104,24,99),(5,105,25,100),(6,81,156,76),(7,82,157,77),(8,83,158,78),(9,84,159,79),(10,85,160,80),(11,86,16,91),(12,87,17,92),(13,88,18,93),(14,89,19,94),(15,90,20,95),(26,111,31,106),(27,112,32,107),(28,113,33,108),(29,114,34,109),(30,115,35,110),(36,121,41,116),(37,122,42,117),(38,123,43,118),(39,124,44,119),(40,125,45,120),(46,131,51,126),(47,132,52,127),(48,133,53,128),(49,134,54,129),(50,135,55,130),(56,141,61,136),(57,142,62,137),(58,143,63,138),(59,144,64,139),(60,145,65,140),(66,151,71,146),(67,152,72,147),(68,153,73,148),(69,154,74,149),(70,155,75,150)], [(1,66,26,56),(2,67,27,57),(3,68,28,58),(4,69,29,59),(5,70,30,60),(6,121,16,131),(7,122,17,132),(8,123,18,133),(9,124,19,134),(10,125,20,135),(11,126,156,116),(12,127,157,117),(13,128,158,118),(14,129,159,119),(15,130,160,120),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(36,86,46,76),(37,87,47,77),(38,88,48,78),(39,89,49,79),(40,90,50,80),(41,91,51,81),(42,92,52,82),(43,93,53,83),(44,94,54,84),(45,95,55,85),(96,146,106,136),(97,147,107,137),(98,148,108,138),(99,149,109,139),(100,150,110,140),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,151,16,141),(7,152,17,142),(8,153,18,143),(9,154,19,144),(10,155,20,145),(11,136,156,146),(12,137,157,147),(13,138,158,148),(14,139,159,149),(15,140,160,150),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45),(56,86,66,76),(57,87,67,77),(58,88,68,78),(59,89,69,79),(60,90,70,80),(61,91,71,81),(62,92,72,82),(63,93,73,83),(64,94,74,84),(65,95,75,85),(96,116,106,126),(97,117,107,127),(98,118,108,128),(99,119,109,129),(100,120,110,130),(101,121,111,131),(102,122,112,132),(103,123,113,133),(104,124,114,134),(105,125,115,135)]])
125 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4L | 4M | ··· | 4Q | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10AB | 20A | ··· | 20AV | 20AW | ··· | 20BP |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
125 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C4○D4 | C5×C4○D4 | 2+ 1+4 | C5×2+ 1+4 |
kernel | C5×C22.49C24 | C5×C42⋊C2 | D4×C20 | C5×C4⋊D4 | C5×C4.4D4 | C5×C4⋊Q8 | C22.49C24 | C42⋊C2 | C4×D4 | C4⋊D4 | C4.4D4 | C4⋊Q8 | C20 | C4 | C10 | C2 |
# reps | 1 | 4 | 2 | 4 | 4 | 1 | 4 | 16 | 8 | 16 | 16 | 4 | 8 | 32 | 1 | 4 |
Matrix representation of C5×C22.49C24 ►in GL4(𝔽41) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 37 | 0 |
0 | 0 | 0 | 37 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
9 | 18 | 0 | 0 |
32 | 32 | 0 | 0 |
0 | 0 | 0 | 9 |
0 | 0 | 32 | 0 |
1 | 0 | 0 | 0 |
40 | 40 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
40 | 39 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,37,0,0,0,0,37],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[9,32,0,0,18,32,0,0,0,0,0,32,0,0,9,0],[1,40,0,0,0,40,0,0,0,0,32,0,0,0,0,32],[9,0,0,0,0,9,0,0,0,0,0,1,0,0,1,0],[40,1,0,0,39,1,0,0,0,0,40,0,0,0,0,40] >;
C5×C22.49C24 in GAP, Magma, Sage, TeX
C_5\times C_2^2._{49}C_2^4
% in TeX
G:=Group("C5xC2^2.49C2^4");
// GroupNames label
G:=SmallGroup(320,1557);
// by ID
G=gap.SmallGroup(320,1557);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1128,3446,436,1242,304]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=1,e^2=c,f^2=g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations